Probabilités, analyse des données et statistique (3e édition)

À propos

La démarche statistique n'est pas seulement une auxiliaire des sciences destinée à valider ou non des modèles préétablis, c'est aussi une méthodologie indispensable pour extraire des connaissances à partir de données et un élément essentiel pour la prise de décision. La très large diffusion d'outils informatiques peut donner l'illusion de la facilité à ceux qui n'en connaissent pas les limites, alors que la statistique est plus que jamais un mode de pensée fondamental pour maîtriser la complexité, l'aléatoire et les risques, en donnant la prudence scientifique nécessaire.
Ce manuel présente l'ensemble des connaissances utiles pour pouvoir pratiquer la statistique. Il est destiné à un vaste public (étudiants, chercheurs, praticiens de toutes disciplines) possédant le niveau d'algèbre et d'analyse d'un premier cycle universitaire scientifique ou économique.
Cette nouvelle édition est une révision complète, avec des ajouts, de l'édition de 1990 et comporte de nombreux développements sur des méthodes récentes. Les 21 chapitres sont structurés en cinq parties : outils probabilistes, analyse exploratoire, statistique inférentielle, modèles prédictifs et recueil de données. On y trouve l'essentiel de la théorie des probabilités, les différentes méthodes d'analyse exploratoire des données (analyses factorielles et classification), la statistique "classique" avec l'estimation et les tests mais aussi les méthodes basées sur la simulation, la régression linéaire et logistique ainsi que des techniques non linéaires, la théorie des sondages et la construction de plans d'expériences.

Sommaire

I. Outils probabilistes. 1. Modèle probabiliste. 2. Variables aléatoires. 3. Couples de variables aléatoires, conditionnement. 4. Vecteurs aléatoires. Formes quadratiques et lois associées. II. Statistique exploratoire. 5. Description unidimensionnelle de données numériques. 6. Description bidimensionnelle et mesures de liaison entre variables. 7. L'analyse en composantes principales. 8. L'analyse canonique et la comparaison de groupes de variables. 9. L'analyse des correspondances. 10. L'analyse des correspondances multiples. 11. Méthodes de classification. III. Statistique inférentielle. 12. Distributions des caractéristiques d'un échantillon. 13. L'estimation. 14. Les tests statistiques. 15. Méthodes de Monte-Carlo et de rééchantillonnage (Jack-knife, bootstrap). IV. Modèles prédictifs. 16. La régression simple. 17. La régression multiple et le modèle linéaire général. 18. Analyse discriminante et régression logistique. 19. Méthodes algorithmiques, choix de modèles et principes d'apprentissage. V. Recueil des données. 20. Sondages. 21. Plans d'expériences. Annexes. Bibliographie. Index des noms. Index.

Rayons : Sciences & Techniques > Mathématiques > Mathématiques fondamentales > Probabilités & Statistiques

  • Auteur(s)

    Gilbert Saporta

  • Éditeur

    Technip

  • Distributeur

    Dilisco

  • Date de parution

    26/07/2011

  • Collection

    Statistiques

  • EAN

    9782710809807

  • Disponibilité

    Disponible

  • Nombre de pages

    622 Pages

  • Longueur

    24 cm

  • Largeur

    17 cm

  • Épaisseur

    3.7 cm

  • Poids

    1 112 g

  • Support principal

    Grand format

Infos supplémentaires : Broché  

empty